Mass Rules, Shell Models and the Structure of Hadrons

Paolo Palazzi, particlez.org

pp@particlez.org
http://particlez.org

FIAS Kolloquium

Frankfurt a.M., June 5th 2014
origin of the idea

1971 p-p elastic at ISR: kink in $d\sigma/dt$

1972 no quarks found at the ISR

1973 e-p DIS at SLAC:
 point-like spin $\frac{1}{2}$ partons, gluons, sea, ..
what are the partons, if not the quarks?

idea, looking at decays in PDG listings:

the stable leptons

count number of stable leptons in decays, (gamma = 2): muon = 3, pion = 4, …

-> N(leptons) proportional to the mass;
shell structure like in atoms and nuclei?
-> identify 4 shells: pi, K, p, Ω
A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

If we assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way" 1-3), we are tempted to look for some fundamental explanation of the situation. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to derive isotopic spin and strangeness conservation and broken eightfold symmetry from self-consistency alone 4). Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the F-spin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions.

Even if we consider the scattering amplitudes of strongly interacting particles on the mass shell only and treat the matrix elements of the weak, electromagnetic, and gravitational interactions by means

ber \(n_1 - n_f \) would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin 1/2 and

\[z = -1, \]

so that the four particles \(d^-, s^-, u^0 \) and \(b^0 \) exhibit a parallel with the leptons.

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon \(b \) if we assign to the triplet \(t \) the following properties: spin 1/2, \(z = -1/2 \), and baryon number 1/3.

We then refer to the members \(u^3, d^- \), and \(s^+ \) of the triplet as "quarks" 6) \(q \) and the members of the anti-triplet as anti-quarks \(\bar{q} \). Baryons can now be constructed from quarks by using the combinations \((qqq) \), \((qqq\bar{q}) \), etc., while mesons are made out of \((q\bar{q}) \), \((qqq\bar{q}) \), etc. It is assuming that the lowest baryon configuration \((qqq) \) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration \((q\bar{q}) \) similarly gives just 1 and 8.
Indicazioni di una struttura a shell delle particelle e conseguenze relative

Elaborato presentato ai concorso-esame per l’I° Idoneità al grado di R5 (ricercatore) dell’INFN,

luglio 1975

RIASSUNTO

Un’ipotesi generale sul contributo dei componenti sconosciuti delle particelle alla massa totale, associata ad un semplice concetto geometrico di stabilità, implica che le radici cubiche delle masse delle particelle relativamente più stabilì sono equispaziate.

La relazione sussistente e’ verificata sullo spettro di massa, e si predicono ulteriori zone di stabilità attorno a 4,6 GeV e 6,8 GeV.

Si stabilisce un’analoga con i nuclei ed i numeri magici.

Si traggono delle conclusioni sul numero dei componenti elementari del pione, e si formula l’ipotesi che i leptoni stabili siano i costituenti elementari della materia. Ne derivano alcune proprietà dell’interazione di legame, e conseguenze sul significato del numeri quantici, in particolare il numero barionico.
J/ψ seen in 1974

shell plot in 1975

later γ seen in 1977, #8
I was not alone:

- mass difference of 70 MeV/c^2:
 - Nambu in 1952,
 - Mac Gregor in 1970, and a few others

- stable leptons as constituents:
 - Barut in 1979
considerably in its magnitude, but the above simple arguments permits us to discuss roughly their angular distributions as follows: the normally scattered meson has angular distribution which is nearly the same as in reference 2, because the effect of p-particle is only to change the coupling constant. But as to the change exchange scattering, the angular distribution is more like that of process II, because this scattering is composed of process I and II and, exact evaluation shows that the process II is predominated. Since the angular distribution of scattered meson given in reference 2 is nearly the same for process I and II, and we may roughly expect almost the same angular distribution for normal- exchange scattering.

In conclusion, the writer wishes to express his sincere thanks to Prof. M. Kobayasi and to Mr. S. Takagi for their kind interest in this work.

An Empirical Mass Spectrum of Elementary Particles

Y. Nambu

Osaka City University

May 14, 1952

It seems to be a general conviction of current physicists that the theory of elementary particles in its ultimate form could or should give the mass spectrum of these particles just in the same way as quantum mechanics has succeeded in accounting for the regularity of atomic spectra. Even if we disregard any philosophical background in such a postulation of theoretical physics, the recent discovery of many unstable, apparent elementary particles drives us in the efforts towards a systematic comprehension of the variety of elementary particles.

With the present undoubtedly insufficient accumulation of our knowledge, however, it may perhaps be too ambitious and rather unsound to look for an empirical "Balmer's law". Nevertheless we should like here to present one such attempt because it happens to be extremely simple, and because the significance and utility, if any, of this kind of attempt could best be appreciated at the stage where it awaits more experimental data to prove or disprove itself by its own predictions.

The nature of V_0 particles and π-mesons has been investigated by several authors. Among other things, we note that their decay Q-values are rather uniform, i.e. of the same order of magnitude of the rest mass of the daughter π-mesons. This gives us a hint that some regularity might be found if the masses were measured in a unit of the order of the π-meson mass. The π-meson mass, being $274 = 137 \times 2$ electron masses (m_e), gives us a second, rather fanciful hint that $137 m_e$ could be chosen as the unit. The ensuing result is given in the accompanying table. We see that the "mass number" of the observed particles is either integer or half-odd, which is generally valid within a deviation of about $\pm 15 m_e$, or $\pm 1/10$ mass unit, for those cases in which the experimental error is also of this order of magnitude. In the above table, we have adopted the view that the heavy V_0 particles have two kinds of Q-values, namely ~ 35 MeV (1:2 mass unit) and ~ 70 MeV (1 mass unit) 11, decaying into a proton and a π-meson. ν^* means the nucleon isobar whose existence is being conjectured from γ-π reaction and π-proton scattering, with an excitation of roughly about 280 MeV (4 m.u.).

We can make a few comments on the result.

1. As was pointed out by Enatsu 11, the adopted mass unit incidentally agrees with Heisenberg's natural unit. The Bosons seem to have integral, while fermions half- integral mass numbers. 2. The small mass value of the electron cannot be explained by the above rule. But we can take the view that this as well as the proton-neutron and π^+-π^0 mass differences correspond to a kind of fine structure. Indeed, their magnitude is just of the order of 1/137 m.u.

It goes without saying that this rule is purely of an empirical nature, and might turn out to be entirely illusory or accidental in the event of getting more reliable data or establishing the true theory of mass spectrum. But the rather strange distribution of the observed mass numbers might simply mean the lack of our knowledge. Indeed, only those particles which have favorable lives as well as abundances for detection have so far been observed, and we have no grounds at all to exclude the possibility that there exist other particles which are liable to escape direct observation. At any rate, an effective and close-by test of this rule may be provided by more accurate determination of the masses of the observed particles. In particular, the π-meson may be predicted to have any of ~ 1030, ~ 1100, ~ 1160, ~ 1230, ~ 1300, ..., electron masses ($7/2$, 8, $81/2$, 9, $91/2$, ... m.u.).

1. E.g., R. Armenteros et al., Phil. Mag. 42 (1951), 1040.
4. Remarks by H. Enatsu at the Tokyo meeting of the Physical Society of Japan, April 1-3, 1952.
Letters to the Editor

...ly simple, and because utility, if any, of this best be appreciated it awaits more experience or disprove itself by

\(V_0 \) particles\(^1\) and \(\tau \)-investigated by several other things, we note values are rather uniform, order of magnitude of the lighter \(\pi \)-mesons. This: some regularity might masses were measured in of the \(\pi \)-meson mass. being \(\sim 274 = 137 \times 2 \) \hbar\text{MeV} \(c \)^2

jectured from \(\gamma - \pi \) reaction and \(\pi \)-proton scattering,\(^5\) with an excitation of roughly about 280 Mev (4 m.u.).

We can make a few comments on the result. \(\odot \) As was pointed out by Enatsu\(^4\), the adopted mass unit incidentally agrees with Heisenberg’s natural unit. \(\odot \) Bosons seem to have integral, while fermions half-integral, mass numbers. \(\odot \) The small mass value of the electron cannot be explained by the above rule. But we can take the view that this as well as the proton-neutron and \(\pi^\pm - \pi^0 \) mass differences correspond to a kind of fine structure. Indeed, their magnitude is just of the order of \(1/137 \) m.u.

It goes without saying that this rule is purely of an empirical nature and might...
STABLE PARTICLES AS BUILDING BLOCKS OF MATTER

A.O. Barut

International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

Only absolutely stable particles can be truly elementary. A simple theory of matter based on the three constituents, proton, electron and neutrino (and their antiparticles), bound together by the ordinary magnetic forces is presented, which allows us to give an intuitive picture of all processes of high-energy physics, including strong and weak interactions, and make quantitative predictions.

MIRAMARE – TRIESTE

April 1979
~ 30 years later
Particles and Shells

Paolo Palazzi, CERN

Abstract

The current understanding of particle masses in terms of quarks and their binding energy is not satisfactory. Both in atoms and in nuclei the organizing principle of stability is the shell structure, while this does not seem to play any role for particles. In order to explore the possibility that shells might also be relevant at this inner level of aggregation, atomic and nuclear stability are expressed by "stablines", alignments of the 1/3 power of the total number of constituents of the most stable configurations. Could similar patterns be found in the particle spectrum? By analyzing the distribution of particle lifetimes as a function of mass, stability peaks are recognized for mesons and for baryons and indeed the cube roots of their masses follow two distinct stablines. Such alignments would be a strong indication that the particles themselves are shell structured assuming only that each constituent contributes a constant amount to the total mass. This is incompatible with the prevalent view that the partons—real physical constituents seen in deep-inelastic scattering experiments—are the quarks. The mass of the Bc, predicted by interpolation with the meson stabline is 7.4 ± 0.2 GeV. On the baryon stabline two missing states are predicted at 3.9 and 7.6 GeV.

Address correspondence to: paolo.palazzi@cern.ch

must establish
statistically relevant
hadron mass rules!
The strong force explained

The strong interaction – often called the strong force, is a fundamental force that acts between the quarks, the building blocks of atomic nuclei. Progress in particle physics often appears hard to grasp for anyone not steeped in the details of quantum mechanics, but in fact determined by the fundamental forces of nature. In fact, about 90% of all protons and neutrons in the interior of the proton and neutron are bound together by the strong force. This year’s Nobel Prize is about this interaction which explains why quarks, protons and neutrons stick together at such high energies. The discovery laid the foundation for a whole new branch of physics: Quantum Chromodynamics (QCD).
atomic physics timeline

CHEMISTRY
1808 Dalton: chemistry is atomic

TAXONOMY
1869 Mendeleyev: periodic table

ENERGY LEVELS
1885 Balmer: spectral rules
1890 Rydberg: extended spectral rules

CONSTITUENTS
1987 Thomson: electron

MODEL
1907 Lenard: model with (+,-) charges
1904 Nagaoka: planetary model
1913 Bohr: model of the H atom

THEORY
1925 Heisenberg: matrix (QM)
1926 Schroedinger: equation (QM)
1926 Schroedinger: H atom
1927: Heitler and London, quantum theory explains chemical bonding
1928 Dirac: equation
particle physics timeline

TAXONOMY
1961 SU(X) multiplets: plausible but incomplete

ENERGY LEVELS (MASSES)
lots of data, but no rules:
1962-64 GMO and 1962 Chew-Frauschi plot,
no longer quoted by the PDG

CHEMISTRY
1963 Cabibbo: later re-expressed as quark mixing, later CKM

MODEL
1964 quark "model" evolved from taxonomy, schematic

CONSTITUENTS
1969 partons (\(\ldots\) = quarks, undeconfinable)

THEORY
197x, blessed in 2004: perfect, but ...
the meson mass system
Abstract

The conjecture that particle masses are multiples of a unit u of about 35 MeV has been proposed in various forms by several authors: mesons are even multiples of u, leptons and baryons odd multiples. Here this mass quantization is reassessed for all particles with mass below 1 GeV (stable leptons and $f_0(600)$ excluded), and found to be statistically significant. Subsequently all the mesons listed by the PDG are grouped in families defined by quark composition and J^P_C, and analyzed for even mass multiplicity with a unit close to 35 MeV separately for each group. For all the the families that can be analyzed unambiguously this multiplicity hypothesis is found to be statistically significant. Most scalar and vector families show a dependence of u from the spin, while for pseudoscalars the effect is not present. Only 5 states out of 120 are rejected due to abnormally large fit residuals. The mass units of the various families are quantized on a grid of 12 intervals of about 0.25 MeV, ranging from 33.88 up to 36.86 MeV. The location of the values on the u-grid shows an intriguing pattern of correlation with the quantum numbers.

Address correspondence to: pp@particlez.org

Download from: http://www.particlez.org/p3a/
NB: two kinds of plots

- **mass unit:**
 mass vs integer: linear-linear

 (also mass unit vs integer)

- **shells:**
 $X^{1/3}$ vs integer: cuberoot-linear

\[y = 33.8600x \]
\[R^2 = 0.9998 \]
\[m = P*u, \eta \text{ mesons} \]

\[y = 0.226x + 0.320 \]
\[R^2 = 0.996 \]

\[0.32 \]
\[0.55 \]
\[0.77 \]
\[1.00 \]
\[1.22 \]
\[1.45 \]
\[1.67 \]
\[1.90 \]
\[2.13 \]

\[0 \]
\[1 \]
\[2 \]
\[3 \]
\[4 \]
\[5 \]
\[6 \]
\[7 \]
\[8 \]
\[9 \]

\[m^{1/3} \text{ vs } i_s \]
mass unit: $u = 35 \text{ MeV/c}^2$ to avoid half-integers

hypothesis:

$m_i = u^* P_i : P \in E \text{ for mesons} \\
(P \in O \text{ for baryons and leptons})$

test procedure:

FOREACH set of [mesons / (q-qbar, J^{PC})] DO:

1. discard states with large errm
2. maximize $R^2(m,P)$ varying u around 35 MeV/c^2
3. fit u with the least squares
4. remove outliers with Chauvenet's criterion
5. check for spin dependence du / dJ
6. compute statistical relevance as $p(H_0)$ by MC

ENDDDO
example: the pions

1. remove states with large errors
2. maximize R^2 varying u

$m_i = u^i P_i$

given the m_i values, vary u, compute P_i and maximize the (m,P) correlation R^2
\(p = P \cdot u\), pions

\[y = 34.69533x\]

\[R^2 = 0.99988\]

Summary pi mesons

- **u**: 34.69 ± 0.051
- **p-value**: 0.997
- **spin dependence**: no
- **omitted**: 3 = 1 averaged + 1 large errm + 1 Chauvenet

<table>
<thead>
<tr>
<th>name</th>
<th>*</th>
<th>q</th>
<th>J</th>
<th>x</th>
<th>P</th>
<th>m</th>
<th>errm</th>
<th>u=m/P</th>
<th>dm</th>
<th>dm/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi(avg 0+/+)</td>
<td>4</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>4</td>
<td>137.3</td>
<td>6.0E-04</td>
<td>34.318</td>
<td>-1.8</td>
<td>1.33%</td>
</tr>
<tr>
<td>pi(1300)</td>
<td>4</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>1</td>
<td>38</td>
<td>1300.0</td>
<td>100.0</td>
<td>34.211</td>
<td>-18.4</td>
</tr>
<tr>
<td>pi(1)(1400)</td>
<td>3</td>
<td>0</td>
<td>+</td>
<td>1</td>
<td>40</td>
<td>1376.0</td>
<td>17.0</td>
<td>34.400</td>
<td>-14.9</td>
<td>1.09%</td>
</tr>
<tr>
<td>pi(1)(1600)</td>
<td>3</td>
<td>0</td>
<td>+</td>
<td>1</td>
<td>46</td>
<td>1596.0</td>
<td>20.0</td>
<td>34.696</td>
<td>-3.6</td>
<td>0.22%</td>
</tr>
<tr>
<td>pi(2)(1670)</td>
<td>4</td>
<td>0</td>
<td>+</td>
<td>2</td>
<td>48</td>
<td>1670.0</td>
<td>20.0</td>
<td>34.792</td>
<td>0.9</td>
<td>0.05%</td>
</tr>
<tr>
<td>pi(1800)</td>
<td>4</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>52</td>
<td>1801.0</td>
<td>13.0</td>
<td>34.635</td>
<td>-7.2</td>
<td>0.40%</td>
</tr>
<tr>
<td>pi(2)(1880)</td>
<td>2</td>
<td>0</td>
<td>+</td>
<td>2</td>
<td>54</td>
<td>1880.0</td>
<td>20.0</td>
<td>34.815</td>
<td>2.2</td>
<td>0.12%</td>
</tr>
<tr>
<td>pi(2)(2005)</td>
<td>2</td>
<td>0</td>
<td>+</td>
<td>2</td>
<td>58</td>
<td>2005.0</td>
<td>15.0</td>
<td>34.569</td>
<td>-11.9</td>
<td>0.59%</td>
</tr>
<tr>
<td>pi(2)(2100)</td>
<td>3</td>
<td>0</td>
<td>+</td>
<td>2</td>
<td>60</td>
<td>2090.0</td>
<td>29.0</td>
<td>34.833</td>
<td>3.6</td>
<td>0.17%</td>
</tr>
<tr>
<td>pi(4)(2250)</td>
<td>2</td>
<td>0</td>
<td>+</td>
<td>4</td>
<td>3</td>
<td>64</td>
<td>2250.0</td>
<td>15.0</td>
<td>35.156</td>
<td>24.5</td>
</tr>
</tbody>
</table>

residuals, compare with [-34.7, 34.7] uniform
6. **statistical relevance**

R^2 distribution, 8 random masses in the range of the pions

express the statistical significance by the p-value of the null hypothesis H_0 computed by Monte Carlo simulation:

for the pions, $p(H_0) = 0.003$

$R^2 = 0.99988$

99.7% statistical relevance
\[m = P^*u, \text{ eta mesons} \]

\[y = 33.8600x \]

\[R^2 = 0.9998 \]

Summary eta mesons

<table>
<thead>
<tr>
<th>Name</th>
<th>q</th>
<th>J</th>
<th>x</th>
<th>P</th>
<th>m</th>
<th>ermm</th>
<th>(u=m/P)</th>
<th>(dm)</th>
<th>(dm/m)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>eta</td>
<td>40</td>
<td>0</td>
<td>16</td>
<td>16</td>
<td>547.3</td>
<td>0.1</td>
<td>34.206</td>
<td>5.5</td>
<td>1.01%</td>
</tr>
<tr>
<td>eta'(958)</td>
<td>40</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>957.8</td>
<td>0.1</td>
<td>34.206</td>
<td>9.7</td>
<td>1.01%</td>
</tr>
<tr>
<td>eta(1295)</td>
<td>40</td>
<td>0</td>
<td>38</td>
<td>38</td>
<td>1293.0</td>
<td>5.0</td>
<td>34.026</td>
<td>6.3</td>
<td>0.49%</td>
</tr>
<tr>
<td>eta(1440)</td>
<td>40</td>
<td>0</td>
<td>42</td>
<td>42</td>
<td>1435.0</td>
<td>35.0</td>
<td>34.167</td>
<td>12.9</td>
<td>0.90%</td>
</tr>
<tr>
<td>eta(2)(1645)</td>
<td>30</td>
<td>2</td>
<td>48</td>
<td>48</td>
<td>1617.0</td>
<td>5.0</td>
<td>33.688</td>
<td>-8.3</td>
<td>-0.51%</td>
</tr>
<tr>
<td>eta(1760)</td>
<td>30</td>
<td>0</td>
<td>52</td>
<td>52</td>
<td>1756.0</td>
<td>11.0</td>
<td>33.769</td>
<td>-4.7</td>
<td>-0.27%</td>
</tr>
<tr>
<td>eta(2)(1870)</td>
<td>30</td>
<td>2</td>
<td>54</td>
<td>54</td>
<td>1842.0</td>
<td>8.0</td>
<td>34.111</td>
<td>13.6</td>
<td>0.74%</td>
</tr>
<tr>
<td>eta(2)(2030)</td>
<td>20</td>
<td>2</td>
<td>60</td>
<td>60</td>
<td>2030.0</td>
<td>20.0</td>
<td>33.833</td>
<td>-1.6</td>
<td>-0.08%</td>
</tr>
<tr>
<td>eta(2190)</td>
<td>20</td>
<td>0</td>
<td>6</td>
<td>64</td>
<td>2190.0</td>
<td>50.0</td>
<td>34.219</td>
<td>23.0</td>
<td>1.05%</td>
</tr>
<tr>
<td>eta(2)(2250)</td>
<td>20</td>
<td>2</td>
<td>66</td>
<td>66</td>
<td>2225.8</td>
<td>13.0</td>
<td>33.723</td>
<td>-9.0</td>
<td>-0.40%</td>
</tr>
<tr>
<td>eta(2225)</td>
<td>30</td>
<td>0</td>
<td>66</td>
<td>66</td>
<td>2227.0</td>
<td>35.0</td>
<td>33.742</td>
<td>-7.8</td>
<td>-0.35%</td>
</tr>
<tr>
<td>eta(2280)</td>
<td>30</td>
<td>0</td>
<td>68</td>
<td>68</td>
<td>2302.5</td>
<td>12.0</td>
<td>33.860</td>
<td>0.0</td>
<td>0.00%</td>
</tr>
<tr>
<td>eta(4)(2320)</td>
<td>20</td>
<td>4</td>
<td>68</td>
<td>68</td>
<td>2328.0</td>
<td>38.0</td>
<td>34.235</td>
<td>25.5</td>
<td>1.10%</td>
</tr>
</tbody>
</table>

low mass

- **Summary**: \(u = 33.86 \pm 0.053 \)
- **p-value**: 0.999 \(\rightarrow p(H_0) = 0.001 \)
- **Spin dependence**: no
- **Omitted**: 4 large ermm
\[m = P^* u, \ Y \text{ mesons} \]

\[
y = 35.29040x \\
R^2 = 0.99991
\]

Summary of Y mesons:

<table>
<thead>
<tr>
<th>Name</th>
<th>q</th>
<th>J</th>
<th>(x)</th>
<th>(P)</th>
<th>(m)</th>
<th>(\text{errm})</th>
<th>(u=m/P)</th>
<th>(dm)</th>
<th>(dm/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y(1S)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>268</td>
<td>9460.3</td>
<td>0.26</td>
<td>35.300</td>
<td>5.5</td>
<td>0.06%</td>
</tr>
<tr>
<td>Y(2S)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>284</td>
<td>10023.3</td>
<td>0.31</td>
<td>35.293</td>
<td>4.0</td>
<td>0.04%</td>
</tr>
<tr>
<td>Y(3S)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>294</td>
<td>10355.2</td>
<td>0.50</td>
<td>35.222</td>
<td>-16.8</td>
<td>-0.16%</td>
</tr>
<tr>
<td>Y(4S)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>300</td>
<td>10580.0</td>
<td>3.50</td>
<td>35.267</td>
<td>-3.7</td>
<td>-0.04%</td>
</tr>
<tr>
<td>Y(10860)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>308</td>
<td>10865.0</td>
<td>8.00</td>
<td>35.276</td>
<td>-0.9</td>
<td>-0.01%</td>
</tr>
<tr>
<td>Y(11020)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>312</td>
<td>11019.0</td>
<td>8.00</td>
<td>35.317</td>
<td>11.9</td>
<td>0.11%</td>
</tr>
</tbody>
</table>

Summary Y mesons:

- \(u = 35.29 \pm 0.009 \)
- p-value: 0.985 \(\implies p(H_0) = 0.015 \)
- Spin dependence: not assessed, all states are J=1
- Omitted: 1 Chauvenet
Spin Dependence du/dJ

\[
m = P^* u, \text{ omega mesons}
\]

Summary Omega Mesons

<table>
<thead>
<tr>
<th>Meson Type</th>
<th>*</th>
<th>(q)</th>
<th>(J)</th>
<th>(x)</th>
<th>(P)</th>
<th>(m)</th>
<th>(\text{errm})</th>
<th>(u = m / P)</th>
<th>(d\text{m})</th>
<th>(d\text{m}/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omega(782)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>22</td>
<td></td>
<td>782.6</td>
<td>0.1</td>
<td>35.571</td>
<td>-5.0</td>
<td>-0.64%</td>
</tr>
<tr>
<td>Omega(1420)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>40</td>
<td></td>
<td>1419.0</td>
<td>31.0</td>
<td>35.475</td>
<td>-12.9</td>
<td>-0.91%</td>
</tr>
<tr>
<td>Omega(1650)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>46</td>
<td></td>
<td>1649.0</td>
<td>24.0</td>
<td>35.848</td>
<td>2.3</td>
<td>0.14%</td>
</tr>
<tr>
<td>Omega(3)(1670)</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>46</td>
<td></td>
<td>1667.0</td>
<td>4.0</td>
<td>36.239</td>
<td>-0.5</td>
<td>-0.03%</td>
</tr>
<tr>
<td>Omega(3)(1995)</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>54</td>
<td></td>
<td>1955.0</td>
<td>30.0</td>
<td>36.204</td>
<td>-2.5</td>
<td>-0.13%</td>
</tr>
<tr>
<td>Omega(2145)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>60</td>
<td></td>
<td>2148.0</td>
<td>15.0</td>
<td>35.800</td>
<td>0.1</td>
<td>0.00%</td>
</tr>
<tr>
<td>Omega(3)(2250)</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>62</td>
<td></td>
<td>2250.0</td>
<td>20.0</td>
<td>36.290</td>
<td>2.5</td>
<td>0.11%</td>
</tr>
</tbody>
</table>

Meson Type = Omega

Name

- Omega, \(J=1\)
- Omega, \(J=3\)

Spin Dependence du/dJ

\[
\frac{du}{dJ} = \text{constant} \times J
\]

- \(u, J=1\): 35.80 \(\pm\) 0.049
- \(p\)-value: > 0.934 (all states), 0.942 for \(J=1\), 0.947 for \(J=3\)
Summary of mass unit analysis, mesons

<table>
<thead>
<tr>
<th>type</th>
<th>k</th>
<th>u</th>
<th>err</th>
<th>uw</th>
<th>p-value</th>
<th>du/dJ</th>
<th>PDG</th>
<th>states</th>
<th>omitted</th>
<th>used</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi</td>
<td>3</td>
<td>34.69</td>
<td>0.051</td>
<td>34.68</td>
<td>0.997</td>
<td>N</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>b</td>
<td>9</td>
<td>36.16</td>
<td>0.050</td>
<td>36.16</td>
<td>0.990</td>
<td>N</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>rho</td>
<td>6</td>
<td>35.19</td>
<td>0.071</td>
<td>35.31</td>
<td>0.973</td>
<td>N</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>0.995</td>
<td>Y</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>a(0)</td>
<td>5</td>
<td>35.00</td>
<td>0.073</td>
<td>35.17</td>
<td>0.941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>6</td>
<td>35.34</td>
<td>0.073</td>
<td>35.39</td>
<td>0.943</td>
<td>N</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>K*</td>
<td></td>
<td>0.882</td>
<td>Y</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K*(1)</td>
<td>2</td>
<td>34.35</td>
<td>0.016</td>
<td>34.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>eta</td>
<td>0</td>
<td>33.86</td>
<td>0.053</td>
<td>33.86</td>
<td>0.999</td>
<td>N</td>
<td>13</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>****</td>
</tr>
<tr>
<td>h</td>
<td>2</td>
<td>34.42</td>
<td>0.056</td>
<td>34.43</td>
<td>0.975</td>
<td>N</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>****</td>
</tr>
<tr>
<td>omega</td>
<td></td>
<td>0.934</td>
<td>Y</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>omega(1)</td>
<td>8</td>
<td>35.80</td>
<td>0.049</td>
<td>35.81</td>
<td>0.943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phi</td>
<td></td>
<td>0.732</td>
<td>Y</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>phi(1)</td>
<td>10</td>
<td>36.51</td>
<td>0.050</td>
<td>36.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>7</td>
<td>35.78</td>
<td>0.070</td>
<td>35.60</td>
<td>0.998</td>
<td>?</td>
<td>33</td>
<td>18</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>D*</td>
<td>3</td>
<td>34.67</td>
<td>0.016</td>
<td>34.66</td>
<td>0.997</td>
<td>N</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>D°</td>
<td>3</td>
<td>34.58</td>
<td>0.023</td>
<td>34.60</td>
<td>0.960</td>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>D(s)</td>
<td>5</td>
<td>35.16</td>
<td>0.021</td>
<td>35.15</td>
<td>0.997</td>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>eta(c)</td>
<td>0</td>
<td>33.89</td>
<td>0.022</td>
<td>33.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>psi</td>
<td>12</td>
<td>36.84</td>
<td>0.034</td>
<td>36.87</td>
<td>0.959</td>
<td>Y</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>****</td>
</tr>
<tr>
<td>chi(c)</td>
<td>7</td>
<td>35.57</td>
<td>0.006</td>
<td>35.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>34.74</td>
<td>0.005</td>
<td>34.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>B(s)</td>
<td>2</td>
<td>34.42</td>
<td>0.004</td>
<td>34.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>6</td>
<td>35.29</td>
<td>0.009</td>
<td>35.30</td>
<td>0.985</td>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

avg->: 0.044 0.949 161 18 18 5 5 46 115 **<-tot**

leptons: 4 34.84 0.022 34.84 2 2 **
\[y = 0.246x + 33.900 \]
\[R^2 = 0.996 \]

\[m_i = P_i^* u \]
\[u_k = u_0 + k^* du, \quad k = 0,12 \]

\[du/dJ \approx 0.25 \]

V and S, but not PS

q-qbar symmetric states

- \(J^{PC} = 0^{+}, 2^{-+} \) : \(k \) even and \(< 6 \) : eta and eta_c at \(k=0 \)
- \(J^{PC} = 1^{+-}, 3^{+-} \) : \(k \) even and \(< 6 \) : h at \(k=2 \)
- \(J^{PC} = 1^{--}, 2^{--} \) : \(k \) even and \(\geq 6 \) : Y, omega, phi, psi at \(k=6,8,10,12 \)
- \(J^{PC} = 0^{++}, 1^{++} \) : \(k \) odd and \(> 6 \) : f and chi_c at \(k=7 \)

q-qbar asymmetric states

if two assignments are modified, by moving the K from 6 to 5 and neglecting the B (s), then the following rules apply:

- \(J^{PC} = 0^{+}, 2^{-+} \) : \(k \) odd and \(< 6 \) : pi, D, B at \(k=3 \)
- \(J^{PC} = 1^{+-}, 3^{+-} \) : \(k \) odd and \(> 6 \) : b at \(k=9 \)
- \(J^{PC} = 1^{--}, 2^{--} \) : \(k \) even and \(\leq 6 \) : K at \(k=2 \), rho at \(k=6 \)
- \(J^{PC} = 0^{++}, 1^{++} \) : \(k \) odd and \(< 6 \) : a(0) at \(k=5 \)
predictions
new states must agree (and they do)

\[y = 35.7824x \]

\[R^2 = 0.9991 \]
The psi(4160) with a residual of 33, rejected by Chauvenet’s criterion. Its mass quoted by the PDG is based on a single measurement by DASP, and in the DASP paper the result of their analysis is compared with MARK1 data showing a more complex peak structure.

Above the psi(4040) the MARK1 data show a peak at around 4110 and possibly more. The psi(4415) is seen unambiguously by both experiments. The DASP view of the discrepancy is: “..our data are in closer agreement with those of SLAC-LBL but show some differences in the finer details of the energy dependence. For instance the 4.16 structure is not resolved in the SLAC-LBL data”.

For sure there are differences, but the DASP interpretation is questionable. Apparently some MARK1 peaks were never identified or never made it to the PDG. A possible interpretation of their spectrum around 4100 is: psi(4040), P=110; psi(4125), P=112; possibly a psi(4200), P=114; no psi(4160).

2007: new BES value = 4191.6 ± 6.0

<table>
<thead>
<tr>
<th>name</th>
<th>*</th>
<th>q</th>
<th>J</th>
<th>x</th>
<th>P</th>
<th>m</th>
<th>errm</th>
<th>u</th>
<th>dm</th>
<th>dm/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi(1S)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
<td>84</td>
<td>3096.9</td>
<td>4.0E-02</td>
<td>36.868</td>
<td>2.2</td>
<td>0.07%</td>
</tr>
<tr>
<td>psi(2S)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
<td>100</td>
<td>3686.0</td>
<td>9.0E-02</td>
<td>36.860</td>
<td>1.9</td>
<td>0.05%</td>
</tr>
<tr>
<td>psi(3770)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
<td>102</td>
<td>3769.9</td>
<td>2.5</td>
<td>36.960</td>
<td>12.1</td>
<td>0.32%</td>
</tr>
<tr>
<td>psi(3836)</td>
<td>3</td>
<td>0</td>
<td>2?</td>
<td></td>
<td>104</td>
<td>3836.0</td>
<td>13.0</td>
<td>36.885</td>
<td>4.5</td>
<td>0.12%</td>
</tr>
<tr>
<td>psi(4040)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
<td>110</td>
<td>4040.0</td>
<td>10.0</td>
<td>36.727</td>
<td>-12.5</td>
<td>-0.31%</td>
</tr>
<tr>
<td>psi(4415)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
<td>120</td>
<td>4415.0</td>
<td>6.0</td>
<td>36.792</td>
<td>-5.9</td>
<td>-0.13%</td>
</tr>
<tr>
<td>psi(4160)</td>
<td>4?</td>
<td>0</td>
<td>1</td>
<td></td>
<td>3</td>
<td>4159.0</td>
<td>20.0</td>
<td>37.134</td>
<td>32.8</td>
<td>0.79%</td>
</tr>
</tbody>
</table>
back to meson shells
Atomic Shells

$Z^{1/3}$

$y = 0.88x + 0.39$

$y = 0.57x + 0.98$

$V = \frac{4}{3} \pi r^3$

$dN/dV = \rho$

$Z_i = 2(\ell+1)(2\ell+1)/6$

tag = inert gases

- no spin-orbit
- spin-orbit

atomic shells
Nuclear shells

\[A^{1/3} \]

\[y = 0.729x + 0.824 \]

\[y = 0.916x + 0.677 \]

2 shell lines with interesting properties:

- **cross at the first shell**, He-4 \((\delta y < 3\%)\);
- in shells 2 and 3, line #2 corresponds to values of \(A\) of 12=6+6 and 28=14+14; 14 recognized long ago as quasi-magic; the “magicity” of 6 is a more recent result;
- the ratio of the cubes of the slopes of the two lines is 1.99, very close to 2: the number of nucleons in series #2 grows from one shell to the next at a rate = 1/2 the one of series #1;
- in line #1 the "packing fraction" is maximal:
 \[(0.916)^3 = 0.768\]

\[N_i = 2, 8, 20, 28, 50, 82, 126: \text{magic} \]
\[Z_i \text{ from Segrè plot, max. stability} \]
\[A_i = N_i + Z_i \]

plot \(A_i^{1/3}\) vs \(i\), tag = \(N_i\)

\[A1(n) = 2^\left[\sum (i+1) \right] i, \quad i=n,1,1] = 2^*[(n+1)^*n + n^*(n-1) +..+2^*1] \]
\[= 4, 16, 40, 80, \ldots \]

\[A2(n) = 2^\left[\sum (i+1) \right] i, \quad i=n,1,2] = 2^*[(n+1)^*n + (n-1)^*(n-2)+\ldots] \]
\[= 4, 12, 28, 52, 88, 136, 200, 280 \]
Meson stability vs mass

\[s_i = \lg \left(\frac{\tau_i}{\tau_{Z0}} \right) \]
$y = 0.226x + 0.320$

$R^2 = 0.996$
combine meson mass shell plot with mass units:

35 MeV/$c^2 = 1$ constituent

\[M(i): (4, 14, 28, 54, 84, 152, *, 294) [i=1,8], \quad y = 0.712 \times x + 0.894, \quad R^2 = 0.9981 \]

very similar to the corresponding values for the second nuclear line

\[N(i): (4, 12, 28, 52, 88, 140, 208) [i=1,7], \quad y = 0.729 \times x + 0.824, \quad R^2 = 0.9999 \]
Meson stability, light unflavored, and strange mesons

Meson stability up to 2 GeV/c^2 with mass scale in steps of 70 MeV/c^2:

- The η at P=16, analogous of the doubly-magic O-16
- Three clusters around 1260 MeV/c^2 (P=36), 1420 MeV/c^2 (P=40), and 1680 MeV/c^2 (P=48).
- Three further clusters with fewer states, ~ 1820 MeV/c^2 (P=52), 2030 MeV/c^2 (P=58), and 2310 MeV/c^2 (P=66).

P=40 corresponds to shell 3 in the nuclear line #1, the doubly-magic Ca-40.

The P distribution for all (a,a), (s,a) and (s,s) states confirms the three clusters around 36, 40 and 48, as well as at 52, 58 and 66. In the shell interpretation the peaks at P=36, 48, 52, 58 and 56 would correspond to sub-shells (to be developed).

P=80 is the doubly-magic shell 4 ~ 2800 MeV/c^2; the histogram is empty from P=72 to 84: as in nuclei, the doubly-magic-equivalent shell series stops at 3.
Meson Shells

- Meson shells 1 to 8 corresponds to nuclear shell line #2, and also **doubly-magic** shells can be identified:
 1) π at $P = 4 \sim \text{He-4}$
 2) η at $P = 16 \sim \text{O-16}$
 3) states at $P = 40 \sim \text{Ca-40}$

 but no states are known near the extrapolated mass values for the following shells in that series, $P = 80, \ldots$;

- on the main meson shell line, the **quark composition progression** from shell 1 to 8 is:
 - aa, sa, ss, $ca+cs$, cc, $ba+bs$, bc, bb; ($a = u$ or d)
 - intriguing role of the s quark,
 - explanation of the mysterious values of **“quark masses”** (for whatever it is worth);

- **t quark**: expect 4 more shells at specific mass values in the range 14 - 31 GeV/c^2, none observed;
 - is shell 8 the **structural limit** for this kind of bound states, like 6 for atoms and 7 or 8 for nuclei?
 - what are the **top events**?

\[
m(t) = m(W) + m(Z^0)
\]
- **solid-phase**
- **coordnum = 12: fcc**
- **charges**

- Constant mass contribution for each parton: suggests solid-phase aggregates, possibly a 3D lattice organization;
- Quantization of the mass unit on a grid of $13=12+1$ values: may be related to the coordination number of the lattice;
- Mesons spins and charges equal or close to 0, with a large number of partons: aggregation with alternating up/down spins and +/- charges.
- On a periodic lattice with coordination number = 12 (such as the fcc), with spin-1/2 partons of charge 0, -1 and +1, arranged as a partially charged "ionic" lattice, several configurations are possible. For a given node of the lattice, the number of charged neighbors k can vary from 0 (all neutral) to 12 (all charged), a total of 13 values. Depending on the charge balancing constraints on these lattice variants, some values of k may not be realized, while other may correspond to more than one configuration; charge balancing constraints might be the reason for the deviation of the value of ρ of the shell states from series S2.
- Assume that the contribution to the total mass is larger for a charged parton than for a neutral one:
 - $u(0) = 33.88 \text{ MeV}/c^2$, neutral parton,
 - $u(12) = 36.84 \text{ MeV}/c^2$ charged parton;

This assumption agrees with the charges of the final products of the decays of the μ (1 charged out of $3 = 4/12, k=4$) and of the π^\pm (1 charged out of $4 = 3/12, k=3$) as verified by the position of the corresponding points on the u-grid. This would not be true with the neutral parton heavier than the charged one.
• η and η_c is at $k=0$ on the u-grid, with all constituents neutral; the specific mass unit of the π^0 is 33.74, close to $u(0)=33.88$, so that 4 neutral constituents can be assumed; the pion is at shell 1 with $P=4$, while the η' is at shell 3 with $P=28$, and the η_c at shell 5 with $P=88$, right at the nominal values of P in the series $A2(n) = 4, 12, 28, 52, 88, \ldots$.

• with no charged constituents, the η and η_c do not need to obey any charge balancing constraints and can sit right at the geometrical shell closure; this should also apply to the η_b, therefore it is expected that the mass shell line with:

$$\pi^0, \eta', \eta_c, \eta_b \text{ in shells } 1, 3, 5, 8$$

would show a sharper alignment, as verified by the chart;

• mesons are similar to nuclei and at the same time show indications of a solid-phase fcc structure, and this may be more than a coincidence: fcc nuclei are not new, see the work of Norman D. Cook, and his recent book: Models of the Atomic Nucleus (Springer).
\[A_1(n) = 2^\left(\sum_{i=n}^1 i \right) = 2^{\left((n+1) + n + (n-1) + \ldots + 1\right)} \]
\[A_2(n) = 2^\left(\sum_{i=n}^1 (i+1) \right) = 2^{\left((n+1)(n) + (n-1)(n-2) + \ldots + 1^n\right)} \]

[tetrahedrically-truncated tetrahedrons]
Looking for neutral and charged partons and antipartons with spin 1/2 and mass less than 30 MeV/c², and with more than one type of neutrals, among the known particles there is only one possible choice:

the stable leptons -->

constituents:

stable leptons?

SU(3) from permutations
the baryon mass system

same analysis, \(P \) is odd
\[m = P^u \text{, } \Lambda \text{ baryons} \]

\[m = 35.78 \times P \]

- **\(m \)**: Mass
- **\(P \)**: Parameter
- **\(\Lambda \)**: Lambda baryons

Graph showing the relationship between mass and parameter, with data points for different lambda baryons with various quantum numbers. The linear fit is indicated as:

- **\(\Lambda \text{, } J=1/2 \)**
- **\(\Lambda \text{, } J=3/2 \)**
- **\(\Lambda \text{, } J=5/2 \)**
- **\(\Lambda \text{, } J=7/2 \)**

Linear fit for all lambda baryons:

- **Linear (\(\Lambda \text{, all} \))**
$m = P^*u, \text{ N baryons}$

$y = 35.1229x$
$R^2 = 1.0000$

$y = 35.3824x$
$R^2 = 0.9998$

$y = 35.6915x$

P_m for N, $J=1/2$

$N(1535)$, omitted

Legend:
- N, $J=1/2$
- N, $J=3/2$
- N, $J=5/2$
- $N(1535)$, omitted

Linear fits:
- Linear (N, $J=1/2$
- Linear (N, $J=3/2$
- Linear (N, $J=5/2$)
$\frac{d\nu}{dJ}$ flip-flop

$y = 35.438x$
$R^2 = 0.99947$

$y = 36.175x$
$R^2 = 0.99887$

$P = \Sigma baryons$

$\Sigma, J=\frac{1}{2}$
$\Sigma, J=\frac{3}{2}$
$\Sigma, J=\frac{5}{2}$
$\Sigma, J=\frac{7}{2}$

Linear (Sigma, $J=\frac{3}{2}$)
Linear (Sigma, $J=\frac{5}{2}$)

$m = P_{u, \Sigma}$
\[m = 35.89 \cdot P \]

\[R^2 = 0.9973 \]
baryon shells
Baryon stability

$s_i = \log (\tau / \tau_{20})$

mass

Baryon stability vs mass

N, Ω, E_c, E_{cc}, Λ_b
Baryon shells

\[y = 0.193x + 0.397 \]

predicted

- \(\Lambda_b \)
- \(\Xi \)
- \(N \)
- \(\Omega \)
- \(\Xi_c \)
- \(\Xi_{cc} \)

\(m^{1/3} \) vs. shell

\(\text{Baryon shells} \)
Particle shells

\[y = 0.193x + 0.397 \]

\[y = 0.226x + 0.320 \]

- baryon vs meson shells

<table>
<thead>
<tr>
<th>shell</th>
<th>0.29</th>
<th>0.53</th>
<th>0.76</th>
<th>1.00</th>
<th>1.24</th>
<th>1.47</th>
<th>1.71</th>
<th>1.95</th>
<th>2.19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Meson shells

Baryon shells
baryon shells organization, clues:

- shells 1 and 2 are not cohesive
- packing density ≈ 1/3 of the full FCC
- 6 nodes at shell 1

diamond lattice? maybe...
interaction
Quantum sure

no need, lattice none, in 1st approx

Quantum

Chromodynamics

Magnetic

m/α = 70 MeV

Coulomb

α²m

positive binding energy!

Barut 1980

FIGURE 1. Schematic form of the effective radial magnetic potential V as a function of the radial distance r for two different fixed values of energy and angular momentum.
implications

• quark-lepton relationship elucidated
• "quark masses" rationalized
• color is not needed
• baryon number may relate to a different lattice
• antimatter asymmetry shifts from the universe to the atom
• 13 out of the >26 SM parameters are gone
• electro-strong unification
• α_s computed in bound state = 0.101 ± 0.0014

problems

• top, but $m(t) \approx m(Z) + m(W)$
• …
Thank you for your attention!

http://particlez.org

pp@particlez.org